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Interruption of torus doubling bifurcation and genesis of strange nonchaotic attractors
in a quasiperiodically forced map: Mechanisms and their characterizations
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A simple quasiperiodically forced one-dimensional cubic map is shown to exhibit very many types of routes
to chaos via strange nonchaotic attract@blAs) in a two-parameterA-f) space. The routes include transi-
tions to chaos via SNAs from both a one-frequency torus and a period-doubled torus. In the former case, we
identify the fractalization and type-I intermittency routes. In the latter case, we point out that at least four
distinct routes for the truncation of the torus-doubling bifurcation and the creation of SNAs occur in this
model. In particular, the formation of SNAs through Heagy-Hammel, fractalization, and type-Ill intermittent
mechanisms is described. In addition, it has been found that in this system there are some regions in the
parameter space where a dynamics involving a sudden expansion of the attractor, which tames the growth of
period-doubling bifurcation, takes place, creating the SNA. The SNAs created through different mechanisms
are characterized by the behavior of the Lyapunov exponents and their variance, by the estimation of the phase
sensitivity exponent, and through the distribution of finite-time Lyapunov exponents.
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I. INTRODUCTION potential[28], and in a neon glow discharge experimgzd]
through different transitions to SNAs. The existence of
Torus-doubling bifurcation (geometrically similar to  SNAs in such physically relevant systems has naturally mo-
period-doubling bifurcationas a universal route to chaos has tivated further intense investigations on their nature and oc-
been one of the leading topics of research in the study cgurrence.
quasiperiodically forced chaotic dynamical systems during A subject of intense further interest is the way in which
the past few yearfl—6]. The existence of such an exotic the truncation of period doubling creates SNAs. In particular,
bifurcation in several experimental situations and theoreticalf Nas been found that the creation of SNAs often occurs due
models indicates the importance of this bifurcation in im-to the collision of a period-doubled torus with its unstable

. k . . 1
proving our understanding of the qualitative and quantitative®@'€nt SO that a period*2orus gives rise to a'2 !-band

; ; SNA [8], or a gradual fractalization of the torus, in which a
behaviors of dynamical systeris—11]. A very common ob- .
servation is that such systems do not undergo an infinit@e”Od'z( torus approaches d:and SNA[9]. Recently, the

sequence of doubling bifurcations as in the case of IOWepresent authors have shown that the torus-doubling sequence
4 g Is tamed due to a subharmonic bifurcatigaubcritical

d|_men3|on_al systems; instead, the truncation of torus dou{;)eriod—doubling bifurcationleading to the creation of SNAs.
bll_ng begins when the doubled torus becomes extreme_zl n addition, this transition has been shown to exhibit type-II|
wrinkled and then gets destroyed. Such a destroyed torus isigarmittent characteristic scalinfl7,19. Apart from the
geometrically strangg(fractal dimensional object in the  .reation of SNAs due to the collapse of the tori, the authors
phase space, a property that usually corresponds to a chaofigye also shown that there are some regions of the system
conditions asymptoticallyffor example, Lyapunov exponents py a merging bifurcation leading to the formation of a torus
are nonpositive and hence is not chaotic and so it is abubble[11], reminiscent of period bubbles in low dimen-
strange nonchaotic attract®NA) [12-29. Actually the ex-  sjonal systems. Also, using the renormalization group ap-
istence of SNAs was first identified by Grebagial.[12] in proach, Kuznetsov, Feudal, and Pikovsky have revealed scal-
their work on the transition from a two-frequency torus toing properties both for the critical attractor and for the
chaos via a SNA. Later on, it was found that these attractorparameter plane topography near the terminal point of the
can arise in physically relevant situations such as a quasipgerus-doubling bifurcatiofi10] in connection with this colli-
eriodically forced pendulunil4,22, quantum particles in sion scenario.

quasiperiodic potential§14], biological oscillators[15], Besides the creation of SNAs through the truncation of
Duffing-type oscillatord16—18, velocity-dependent poten- torus-doubling bifurcation, several other mechanisms have
tial systemg[11], electronic circuitg19,20, and in certain also been studied in the literature. The most common is
maps[21-26, with different transitions to SNAs including gradual fractalization of a torus where an amplitude or phase
the torus-doubling bifurcation and the creation of SNAs.instability causes the collapse of the tof@% This is in fact
Also, the existence of torus-doubling truncation and the apene of the least understood mechanisms for the formation of
pearance of SNAs was confirmed by an experiment on &NAs since there is no apparent bifurcation, unlike the torus
quasiperiodically forced, buckled magnetoelastic ribboncollision mechanism identified by Pikovsky amd Feudel
[27]. Besides this experiment, exotic strange nonchaotic atwhere a stable torus and an unstable torus collide at a dense
tractors were studied in analog simulations of a multistableset of points, leading to the creation of SNJ&3|. Prasad,
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Mehra, and Ramaswani®1] have shown that a quasiperi- to quasiperiodic forcing as in modé3). As the system?3)

odic analog of a saddle-node bifurcation gives rise to SNA$ossesses more than one control parameter and remains in-
through an intermittent route with the dynamics exhibiting variant under reflection symmetry, remerging is likely to oc-
scaling behavior characteristic of type-I intermittency. Yal-cur, as in the absence of quasiperiodic forcing in the system
cinkaya and Lai have shown that an on-off intermittency can?2). Our numerical study shows that for a fixed valueQoin

be _associated with SNA cr_eation through a blow-out bifur-ggme regions of theA-f) parameter space a torus-doubled
cation when a torus loses its transverse stabfii§]. Other oyt emerges and remerges from a single-torus orbit at two
than these scenarios, a number of other quasiperiodic routfterent parameter values 6o form a single torus bubble.

to SNAs have been described in the literatltt8,23. They g0 5 remerging bifurcation can retard the growth of the
include the existence of SNAs m_the_ transition fro_”? WO-torus-doubled bifurcations and the development of the asso-
frequency to three-frequency quasiperiodi¢itg], transition ciated universal route to chaos further. However, the nature

from three-frequency quasiperiodicity to chaos via a SNA’of the remerging torus-doubled bifurcation or, more specifi-

and transition to chaos via strange nonchaotic trajectori . . .
a torus[25] g jectories 0cr:]ally, the torus bubbling ensures the existence of different

Considering particularly the different routes discussed©UteS for_the creation of _SNAS when the f“”.“’?‘f‘.ge c_)f ba-
above for the inhibition of the torus-doubling sequence andameters is explpred. To illustrate such possibilities .|n the
the creation of SNAs, we note that they have so far beeRrésent system in the two-parametér-) space, we first
identified essentially irdifferent dynamical systems. How- €numerate three standard types of route to a SNA, namely,
ever, it is important to study the truncation of the torus-(1) the Heagy-Hammelcollision of the period-doubled torus
doubling bifurcations and the appearance of SNAs in a singl#ith its unstable parent(2) the gradual fractalizatiotam-
system in order to understand the mechanisms and their chaplitude or phase instabilijy and (3) the type-lll intermit-
acteristic features clearly. In this connection, we consider &ncy (subharmonic instability routes through which the
simple model in the form of a one-dimensional cubic map, truncation of torus-doubling bifurcation occurs, leading to

the creation of SNAs within the torus bubble region.

Xi+1= — AX; +Xi31 (1) In addition, we identify that in some cross sections of the
(A-f) parameter space, particularly within the torus bubble
region, the period-doubling bifurcation phenomenon still
persists in the destroyed torus, even though the actual dou-
bling of the torus itself has been terminated. However, we
show thatthe dynamics involved in this transition is a sud-
den expansion in the attractofhis transition looks like the

which is quite analogous to the typical Duffing oscillator
[30,31. The existence of different dynamical features of this
system has been studied in Ref81,32. In the present
work, we investigate the dynamics df) with the addition of

a constant bias,

Xis1=Q—Ax+x3, (2)  interior crisis that occurs in low dimensional chaotic systems
[33]. We also demonstrate the occurrence of SNAs through
and also subject to an additional quasiperiodic forcing, ~ 9radual fractalization and type-I intermittency, during the
transition from one-frequency quasiperiodicity to chaos that
Xi+1=Q+f cog2m6;) —Ax+x?, exists outside the torus bubble region.
In all our studies the transitions to different SNAs at dif-
;1= 0;+w(mod 1), (3)  ferent parts of the border in theé\{f) parameter plane and

their characterization are carried out on the basis of specific
and show that the latter is a rich dynamical system in comguantities such as Lyapunov exponents and their variance as
parison with the former, possessing a vast number of regulawell as finite-time Lyapunov exponents, dimensions, power
strange nonchaotic and chaotic attractors in a two-parametspectral measures, and phase sensitivity exponents. Brief de-
(A-f) space for a fixedd. In particular, we focus our atten- tails of these characterizing quantities are given in the Ap-
tion mainly on the truncation of torus-doubling bifurcations pendix. In Sec. Il we describe the phenomenon of the re-
leading to the creation of SNAs and the mechanisms bynerging of the Feigenbaum tree in the absence of
which they arise in a range of the two-parametérf( quasiperiodic forcing in the maf®). The existence of re-
space, besides pointing out the standard transitions to chaaserging torus-doubling is pointed out in Sec. Ill. Various
via SNAs from a one-frequency torus. A variety of transi- transitions to SNAs through the truncated doubled torus are
tions from a truncated doubled torus to SNAs can be identidemonstrated in Sec. IV. In particular, the truncation of the
fied, characterized, and distinguished in this system. torus-doubling bifurcation and the creation of SNAs through

To start with, we show that the systg®) undergoes one torus collision, fractalization, and type-lll intermittent

or more period doublings but it need not complete the entireanechanisms are explained. Further, a sudden expansion of
Feigenbaum cascade, and that it may be possible to haike attractor causing the truncation of torus-doubling bifur-
only a finite number of period doublings, followed by, for cation and the genesis of a SNA is also demonstrated. In Sec.
example, undoubling or other bifurcations in the presence oY, the transition from a one-frequency torus to a SNA
constant bias, as was shown by Bier and Bountis in differenthrough type-I intermittent as well as fractalization mecha-
systemdg32]. The possibility of such a different remerging nisms is described. In Sec. VI the transitions between differ-
bifurcation phenomenon in the torus-doubling sequence isnt SNAs are discussed. In Sec. VIl we address the issue of
reported in the present case, when the sys®ris subjected distinguishing among SNAs formed by different routes
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FIG. 1. Bifurcation diagram for the mag) in the (x,Q) plane. FIG. 2. Phase diagram for quasiperiodically forced cubic map,
(@ The primary bubble atA=1.5, (b) period-2 and period-4 EQ.(3), in the (A-f) parameter space f@®@=0. Here I and 2T
bubbles atA=1.7, (c) period-doubling route to chaos and inverse correspond to tori of period 1 and 2, respectively. GF1, GF2, GF3,
period doubling aA=1.8. and GF4 correspond to the regions where the process of gradual

fractalization of the torus occurs. HH represents the region where
through the use of finite-time Lyapunov exponents. Finally,the SNA is created through the Heagy-Hammel roe.and S3

in Sec. VIII, the results are summarized. denote regions where the SNA appears through type-I and type-Ii|
intermittencies, respectively. IC denotes the region where the SNA

is created through crisis-induced intermitten@1 andC2 corre-

Il. REMERGING OF FEIGENBAUM TREES IN THE .
spond to chaotic attractors.

ABSENCE OF QUASIPERIODIC FORCING

To start with, we consider the systg) and numerically
iterate it by varying the values & andQ. For anyQ value
and low A values, the systen2) exhibits periodic oscilla-
tions with period T. As A increases, a bifurcation occurs
and the stable periodi-orbit transits into a stable periodF2
bubble, as shown in Fig.(4). For example, when the value
of Q exceeds a certain critical valG@= —0.99 for a fixedA,
A=1.5, a transition from a period@- orbit to a period-Z
orbit occurs on increasing), essentially due to period-
doubling bifurcation. Then the periodf2attractor merges
and forms a period- attractor when the value @ increases
to Q=0.99 at the same fixed. At even higher values oA,
A=1.7, the primary period-R bubble bifurcates into sec-
ondary period-F bubbles, as shown in Fig.(Hd). This Now we consider the dynamics of the quasiperiodically
bubble develops into further bubbles/gets larger, untilan  driven map(3) and numerically iterate it with the value of
infinitely branched Feigenbaum tree leading to the onset othe parametew fixed atw=(y/5—1)/2 and by varying the
chaos finally appears, as shown in Fi¢gc)lfor A=1.8. values ofA andf for different fixed values of. The results

Bier and Bountis showed that such a remerging of Feigenare then summarized in a suitable two-parametef) phase
baum trees is quite common in certain models possessingdiagram for each fixed value of. Various dynamical
kind of reflection symmetry property coupled with more thanbehaviors—quasiperiodic, strange nonchaotic, and chaotic
one parametdi32]. Further, they added that the formation of attractors—have been identified by characterizing the attrac-
the primary period-Z bubble is seen to lead to higher order tors by quantities such as Lyapunov exponents and their vari-
bubbles and the development of the associated universahce as well as finite-time Lyapunov exponents, dimensions,
route to chaos in these systems. It is also stated in the litergpower spectral measures, and phase sensitivity exponents
ture that the reversal of period doubling occurs when thefor details, see the Appendix
system possesses a positive Schwarzian derivative at the bi- In the absence of external forcing=€0), from Fig. 1, we
furcation point[34,35. This is true for the present case that can easily check that for fixe@ and for givenA the dynam-
we study. However, there are some counterexamples des corresponds to periodic or chaotic attractors. For instance,
pointed out by Nusse and York85], to show that the posi- for Q=0 and for any value ofA, the system admits a
tivity of the Schwarzian derivative is not a sufficient condi- period-2 solution. Similarly, foQ=0.25 andA=1.8, itis a
tion to rule out period-halving bifurcations. period-4 orbit, while forQ=0.5 andA=1.8, it is a chaotic

In the present paper, our aim is to investigate the effect of
a quasiperiodic forcing on the systd®) as given by Eq(3).
In particular, we point out that, with the addition of quasip-
eriodic forcing for a fixedQ, the dynamics is dominated by
quasiperiodic attractors and transitions to chaos via strange
nonchaotic attractors along different routes in contrast to the
type of attractors shown in Fig. 1. For this purpose we also
work out a two-parameterA-f) phase diagraniFig. 2) to
identify the changes in the dynamics.

IIl. SNAs IN THE QUASIPERIODICALLY FORCED
CUBIC MAP
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orbit. We now include the effect of quasiperiodic forcing 1
(f#0) and analyze the dynamics involving torus, period-
doubled torus and chaos via SNAs. A very clear picture of

the various types of transition becomes available for the cas« o x
Q=0 in the regionf € (—0.8,0.8) andA e (0.8,2.4), while

similar structure arises in a larger region for other values of ~
Q. Consequently, we present in the following results @r -1

=0 only in the form of the phase diagram in Fig. 2. The ¢ 6° !
various features indicated in Fig. 2 are summarized and the o )
dynamical transitions are discussed in the following. FIG. 3. Projection of the attractors of Ed8) for f=0.7 in the

The general features of the phase diagram fall into a ver)('x'e) plane indicating the transition from quasiperiodic attractor to
interesting pattern. It can be observed from Fig. 2 that th&haotic attr_a(;o:j V'&‘ atSNA ;h;ouzghfthiﬁi?gé:.agnrgﬂ Am?Cha'
dynamics is symmetric abotit=0. Therefore, in the follow- nism: (&) wrinkled attractor(period-2T) for A=1. (b) a
. . . . A=1.88697.
ing we present the details for the right of the 0 line only.

The features are exactly similar in the left half of the d|a-doubling bifurcation is truncated and the creation of a

gram. Therg are two chaotic regiofid apdCZ. Bordering strange nonchaotic attractor takes place. The details for each
these chaotic regions, one has the regions where the attragf- the regions are given in the following sections

tors are strange and nonchaotic. Such SNAs are found to
appear in a large number of regions under various mecha-
nisms, some of which are marked GF1, GF2, GF3, and GF4, V. DYNAMICS WITHIN THE TORUS BUBBLE

HH, IC, S1, and S3. Besides the strange nonchaotic and |, his section, we will describe each one of the four types

chaotic attractors in the phase diagram Fig. 2, one can al§% ransitions to chaos via SNAs within the torus bubble
observe different regions where quasiperiodic attractors Cafbgion in detail.

be found. In Fig. 2, such regions are marked dsahd 2T,
corresponding to the quasiperiodic attractors of period 1 and
period 2, respectively. Fuller details are given below.

For low A and anyf value, the system exhibits quasiperi-  The first of the routes that we encounter is the Heagy-
odic oscillations denoted byTLin Fig. 2. On increasing the Hammel route in which a period®2orus gets wrinkled and
value of A further, the fascinating phenomenon of the torusupon collision with its unstable parent the peridt-2 torus
bubble appears within a range of valuesfoffo be more bifurcates into a SNA8]. Such a route has been identified in
specific, the parametéis, for example, fixed ah=1.1 and the region C2 within the range ofA values 1.549% A
thenf is varied. Forf = — 0.3, the attractor is a quasiperiodic <2.183 andf values 0.3%f<0.8. That is, the doubling bi-
one (IT). Asfis increased td = —0.18, the attractor under- furcation is truncated due to the collision of the doubled
goes torus-doubling bifurcation and the corresponding orbitorus with its unstable parent on increasing the valué of
is denoted as P in Fig. 2. Asf is increased further, one then the range 1.549A<2.183, for a fixedf value (0.39<f
expects that the doubled attractor continues the doubling se<0.8). This route is denoted as HH in Fig. 2. For example,
guence as in the case of the generic period-doubling phdet us fix the parameterat f=0.7 and varyA. For A=1.8,
nomenon. Instead, in the present case, the doubled attractire attractor is a quasiperiodic one, as denoted byniFig.
begins to merge into a single attractorfat0.18, leadingto 2. As A is increased toA=1.876, the attractor undergoes
the formation of a torus bubble reminiscent of period bubblesorus-doubling bifurcation and the corresponding periodic
in low dimensional systems, as in the previous section. Omrbit is denoted as 2 in Fig. 2. In the generic case, the
refixing the parameteh at higher values, one finds that there period doubling occurs in an infinite sequence until the ac-
are two prominent regions of chaotic oscillatidd$ andC2 cumulation point is reached, beyond which chaotic behavior
as shown in Fig. 2. The chaotic regi@1 exists outside the appears. However, with tori, in the present case, the trunca-
torus bubble region. That is, it essentially occurs for larger Ation of the torus-doubling begins when the two strands of the
values,A>1.2 andf >0.6. On the other hand, the regi@?2 2T attractor become extremely wrinkled. For example, when
emerges within the torus bubble region. That is, it appearthe value ofA is increased toA=1.8868, the attractor be-
predominantly for even larger values Af A>1.549 andf  comes wrinkled as shown in Fig(&8. At this transition, the
lying between—0.8 and 0.8. We have identified two inter- strands are seen to come closer to the unstable pefiiod-1
esting dynamical transitions from one-frequency quasiperiorbit, lose their continuity when the strands of the torus-
odicity to chaos via SNAs outside the torus bubble regiondoubled orbit collide with the unstable parent, and ultimately
They are(1) gradual fractalization of the torus leading to result in a fractal attractor as shown in FighBwhenA is
creation of a SNA(GF4), and (2) the type-l intermittent increased teA=1.886 97. At such a value, the attractor, Fig.
route leading to the creation of a SNA&Y). There also exist 3(b), possesses a geometrically strange property but does not
at least four types of transition to chaos via SNAs within theexhibit any sensitivity to initial conditiongthe maximal
torus bubble where the doubling of the torus is interruptedLyapunov exponent is negative as seen in Fig)}4and so it
namely,(1) Heagy-HammelHH), (2) gradual fractalization is indeed a strange nonchaotic attractor. At this transition, the
(GF1, GF2, and GB3(3) type-IIl intermittent §3), and(4) two branches of the wrinkled attractor collide and form a
doubling of destroyed tori routes, through which the torus-one-band SNA. This kind of transition is similar to the at-

A. Heagy-Hammel route
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' ) ' FIG. 5. Projection of the attractors of Ed8) for f=0.1 in the
3 A (x,6) plane indicating the transition from quasiperiodic attractor to
2x10 chaotic attractor via a SNA through the gradual fractalization
mechanism:(a) wrinkled attractor(period 2T) for A=2.165; (b)
SNA atA=2.167.
G 1 force. The details of this analysis are given in the Appendix.
From Eqg.(A4), one infers that the functioh'y grows infi-
(b) nitely for a SNA with some relation such &,=N*, where
M is a positive quantity that characterizes the SNA; we may
01-%865 1837 18875 call it the phase sensitivity exponent. For the present case, it

A is ©=0.98. However, in the case of a chaotic attractor, it
grows exponentially wittN [see Fig. 4c)].

B. Fractalization route

The second of the routes is the gradual fractalization route
where a torus gets increasingly wrinkled and then transits to
a SNA without interactior{unlike the previous cagevith a
nearby unstable orbit as we change the system parameter. In
this route, a period-2torus becomes wrinkled and then the
wrinkled attractor gradually loses its smoothness and forms a
4 2"-band SNA as we change the system parameter. Such a
phenomenon has been identified in the present system in
three different regions indicated as GF1, GF2, and GF3 in
FIG. 4. Transition from doubled torus to SNA through Heagy- Fig. 2. To exemplify the nature of this transition, we fix the
Hammel mechanism in the region HHa) the behavior of the parameterf at f=0.1 and varyA in the GF3 region. FOA
Lyapunov exponentA); (b) the variance ¢); (c) plot of phase  =1.0, the system exhibits quasiperiodic oscillation of period
sensitivity functionI'y vs N (dotted line corresponds to torus for 1T. The attractor undergoes a torus-doubling bifurcation as
A=1.83, dashed line belongs to SNA fér=1.886 97, and solid A js increased té\=1.06. On increasing tha value further,
line represents chaos fér=1.8878). a second period doubling of the doubled torus does not take
place. Instead, oscillations of the doubled torus in the ampli-
tractor merging crisis occurring in chaotic systef88]. As  tude direction start to appear At=2.165 as shown in Fig.
A'is increased further t=1.8878, the attractor eventually 5(a). As A is increased further té\=2.167, the oscillatory
has a positive Lyapunov exponent and hence it correspondsehavior of the torus gradually approaches a fractal nature.
to a chaotic attractor@2). At such values, the nature of the attractor is strgsge Fig.
Now we examine the Lyapunov exponent for the transi-5(b)] even though the largest Lyapunov exponent in Fig) 6
tion from torus to SNA. Figure @) is a plot of the maximal remains negative. Such a phenomenon is essentially a
Lyapunov exponent as a function Affor f=0.7. When we  gradual fractalization of the doubled torus as was shown by
examine this in a sufficiently small neighborhood of the criti- Nishikawa and Kaneko in their route to chaos via a JI9A
cal valueA,;=1.886 97, the transition is clearly revealed by In this route, there is no collision involved among the orbits
the Lyapunov exponent, which varies smoothly in the torusand therefore the Lyapunov exponent increases only slowly,
region (A<A,y) while it varies irregularly in the SNA re- as shown in Fig. @), and there are no significant changes in
gion (A>A,y). It is also possible to identify this transition its variance[see Fig. @)]. Further, the phase sensitivity
point by examining the variance of the Lyapunov exponentfunction'y grows unboundedly with the power-law relation
as shown in Fig. @), in which the fluctuation is small in the T'y=N*, ©=0.83, in the SNA region, while it is bounded in
torus region while it is large in the SNA region. the torus regiorisee Fig. €&)]. At even higher values oA,
In addition, in order to distinguish the quasiperiodic at-A=2.17, the system exhibits chaotic oscillatior32(). The
tractor and the strange nonchaotic attractor, we may examinguantity Iy, grows exponentially withiN for the chaotic at-
the attractor with reference to the phageof the external tractors.

102 10
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FIG. 7. Projection of the attractors of Ed8) for f=0.35 in the
(x,6) plane indicating the transition from quasiperiodic attractor to
chaotic attractor via a SNA through the type-lll intermittent mecha-

3 nism: (a) wrinkled attractor(period 2T) for A=2.135;(b) SNA at
A=2.14.

G behavior exhibits type-Ill intermittent motion. In a similar

manner, one finds that the wrinkled attractor undergoes a

quasiperiodic analog of the subcritical period-doubling bifur-

1 cation on increasing the value éffurther toA=2.14. The

(b) corresponding intermittent motion is shown in Figbj The

2.165 2.166 2.167 2.168 emergence of such intermittent dynamical behavior has been
A found in different continuous systems by the present authors

and their collaborators through the intermittent route to

chaos via SNA[17], where it was shown that during the

transition from torus-doubled attractor to SNA growth of a

subharmonic amplitude begins together with a decrease in

the size of the fundamental amplitude. At the critical param-

eter value, the intermittent attractor loses its smoothness and

becomes strange. The attractor shown in Fi{f) & nothing

but a strange nonchaotic one as the Lyapunov exponent turns

out to be negativgFig. 8@)]. On examining the Lyapunov

. exponent at this transition, it is observed in Fige)&hat the

N Lyapunov exponent shows an abrupt change with a power-

law dependence on the parameter on the SNA side of the

FIG. 6. Transition from doubled torus to SNA through gradual transition and the variance shows a remarkable and abrupt
fractalization mechanism in the region GKRa} the behavior of the increase at the transition point as shown in Fidp) 8Further,
Lyapunov exponentA); (b) the variance ¢); (c) plot of phase  the phase sensitivity functiohiy is bounded for the torus
sensitivity function.FN vs N (dotted line corresponds to tgru; for region while it is unboundedly changing with a power-law
A=1.85, dashed line belongs to SNA far=2.167, and solid line  ygriation with N for the SNA region[Fig. 8c)] with u
represents chaos fdv=2.17). =0.85. On increasing the value Affurther toA=2.153, we
find the emergence of a chaotic attract@2() where the
quantity "y grows exponentially with NFig. 8(c)].

The third of the routes that is predominant in this system In the HH case, the points on the SNA are distributed over
within the torus-doubled region is an intermittent route inthe entire region enclosed by the wrinkled bounding torus,
which the torus-doubling bifurcation is tamed due to subharwhile in the GF case the points on the SNA are distributed
monic bifurcations leading to the creation of a SNA. Such amainly on the boundary of the torus. Interestingly, in the
phenomenon has been identified within the rangéwafiues  present case shown in Fig(bJ, most of the points of the
0.33<f<0.41 and on increasing the value Af 1.81<A  SNA remain within the wrinkled torus with sporadic large
<2.18, for a fixed. To illustrate this transition, let us fix the deviations. The dynamics at this transition obviously in-
parameter at f=0.35 and varyA. For A=1.0, the attractor volves a kind of intermittency. Such an intermittency transi-
is a quasiperiodic attractor. Asis increased té\=1.28, the tion could be characterized by scaling behavior. The laminar
attractor undergoes a torus-doubling bifurcation. On increasghase in this case is the torus while the burst phase is the
ing the value ofA further, A=2.13, the attractor starts to nonchaotic attractor. In order to calculate the associated scal-
wrinkle. On further increase oA to A=2.135, the attractor ing constant, we coevolve the trajectories for two different
becomes extremely wrinkled and has several sharp bends, @slues ofA, namely,A, and another value near ., while
shown in Fig. 7a). It has been observed in lower dimen- keeping identical initial conditionsx(,#;) as well as the
sional chaotic system5,36 that when the system under- same parameter valdieAs the angular coordinat#® remains
goes subcritical period-doubling bifurcation the dynamicalidentical, the difference ix; allows one to compute the av-

C. Type-lll intermittent route
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FIG. 8. Transition from doubled torus to SNA through type-lil
intermittent mechanism in the regid®8: (a) the behavior of the
Lyapunov exponentX); (b) the variance §); (c) plot of phase
sensitivity functionI"y vs N (dotted line corresponds to torus for
A=1.83, dashed line belongs to SNA fér=2.14, and solid line

2133 2.135

2.1

(b)

1
2.133 2.135

2.1

10° 10

represents chaos féx=2.15).

erage laminar length between the bursts, and it fits the sca

ing form

(H=(A—A)"“

37
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7(b) is a~1.1[see Fig. 8a)]. To confirm further that the
SNA attractor{Fig. 7(b)] is associated with intermittent dy-
namics, we plot the frequency of laminar periods of duration
7, namely,N(7) in Fig. 9b). It obeys the scalin§37] law
exp(—4der) |°°
N i m aem] ©
We find that e=0.007+0.0002 gives the best fit for the
present data. These characteristic studies suggest that the in-
termittency is of type Ill as discussed by Pomeau and Man-
neville in low dimensional systeni86,37).

D. Crisis-induced intermittency

In the preceding subsections, we have seen that the
period-doubling bifurcation of a torus has been truncated by
its destruction, leading to the emergence of a SNA in certain
regions of the A-f) parameter space. Further, we observe
that in the present system in some cross sections ofAH8 (
parameter space the period-doubling phenomenon still per-
sists in the destroyed torus even though the actual doubling
phenomenon has been truncated. But in the present case it is
observed that the doubling of the destroyed torus involves a
kind of sudden widening of the attractor similar to the crisis
phenomenon that occurs in chaotic systems. Such a phenom-
enon has been observed in the present model in a range of
values, 0.13f<0.24, and for a narrow range &f values,
2.12<A<2.14. ltis denoted as IC in Fig. 2. For example, let
us choosef =0.2 and vary the value oA. For A=0.8, the
attractor is a quasiperiodic one. A& is increased toA
=1.18, the system undergoes torus-doubling bifurcation. On
increasing the value oA further to A=2.138, the attractor
begins to wrinkle as shown in Fig. (). On increasing the
value of A further, say, toA=2.1387 the wrinkled attractor
undergoes torus-doubling bifurcation and the corresponding
orbit is shown in Fig. 1(). It is also seen from Figs. 10)
and 1@c) that whenA is slightly larger tharA,;=2.1387 the
orbit on the attractor spends long stretches of time in the
region to which the attractor was confined before the crisis.
t the end of these long stretches the orbit bursts out of the
ld region and bounces around in the new region made avail-
able to it by the crisis. It then returns to the old region for
another stretch of time, followed by a burst, and so on. This
kind of widening of the attractor usually occurs in chaotic

The numerical value obtained for the attractor shown in Figsystems at a crisif33]. However, in the present case, we

2000

1500

1000

<>

500 |

) ) N N
0.0000 0.0005 0.0010 0.0015 0.0020

AA,

N(z)

3.0

25}

20F

(b)

FIG. 9. (a) Average laminar length((})) vs
(A—A,) at f=0.35; (b) number of laminar peri-
ods N(7) of duration7 in the case of transition
through type-IIl intermittency.
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-2 -2

0 . | .x104

b)) bii) —
ey T FIG. 10. Projection of the attractors of Egs.

(3) for f=0.2 (i) in the (x,0) plane;(ii) in the
(x,i) plane, indicating the transition from quasi-
periodic attractor to chaotic attractor via a SNA
through the crisis-induced intermittent mecha-
nism: (a) wrinkled attractor(period 2T) for A
=2.138; (b) SNA at A=2.1387;(c) SNA at A
=2.1388.

el ofii)

x 10

have shown such a possibility in a quasiperiodically forcedization process instead of the transition from thgé @rus
system which also truncates the growth of the torus-doublediscussed above. Such a phenomenon is identified in the
cascade, creating SNAs. The variation of the Lyapunov extower side of theC1 region (GF4) in Fig. 2. Specifically,
ponent at such a transition does not follow a uniform patternwithin the region 0.58 f<0.8, on increasing the value &f
in contrast to the case of low dimensional chaotic systemgy the region 1.214 A< 1.569 for a fixed, the SNA is cre-
exhibiting the crisis phenomengsee Figs. 1) and 11b)].  4ted through the gradual fractalization route. First, a transi-
In addition, the phase sensitivity functidfy grows withN oy from the one-frequency torus to a wrinkled attractor
with a kind power-law reI_at|on for.the SNA while it is oras place on increasimy A=1.25 forf=0.7, as shown in
_bounded for the torus regiorjsee Fig. 1lc)]. On f“”h_ef Fig. 12a). The wrinkled attractor loses its continuity consid-
Increase of_the. value ok to A=2.143, t.he system exhibits erably asA is increased further and then finally becomes
chaqtlc osglllatlons ©2) and the quantitfi'y grows expo- fractal atA=1.265[see Fig. 1@)]. It is very obvious from
nentially with N. - .
these transitions that the torus gradually loses its smoothness

and ultimately approaches fractal behavior via a SNA before
the onset of chaos as the paraméténcreases té\=1.3. In

Two additional interesting transitions take place outsideaddition, it is observed that there is no apparent interaction
the torus bubble region, name($) gradual fractalization of among the orbits. This property has been confirmed through
the torus and2) the type-I intermittent route, both leading to the calculation of the maximal Lyapunov exponent, its vari-
creation of a SNA. The details are as follows. ance, and the phase sensitivity as in the period-doubled re-

gions.

V. DYNAMICS OUTSIDE THE TORUS BUBBLE

A. Fractalization route

The first mechanism is the gradual fractalization route, B. Type-I intermittent route

which is the same as studied in Sec. IV B; the only difference A different type of intermittent route, namely, typ¢21],
now is that here a transition from a one-frequency torug)(1 via the SNA is also observed in the upper regionCdf in
to chaos via the SNA is realized through the gradual fractaFig. 2. Within the range of values 0.5§ <0.8, on increas-
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A
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1
5 x10
1.5
o
1
(b)
05 \M,\
2.1386 2.1388 2.139
A
I'n

10°

FIG. 11. Transition from doubled torus to SNA through crisis-
induced intermittency mechanism in the region (8):the behavior
of the Lyapunov exponentX); (b) the variance §); (c) plot of
phase sensitivity functiof'y, vs N (dotted line corresponds to torus
for A=1.83, dashed line belongs to SNA far=2.1388, and solid
line represents chaos fér=2.139).

ing the value ofA in the range 1.5 A< 2.0, a transition from
the chaotic attractorG1) to a SNA takes place first and then

PHYSICAL REVIEW B3 026219

(b)

-1

-2

FIG. 13. Projection of the attractors of E@8) for f=0.7 in the
(x,0) plane indicating the transition from a one-frequency quasip-
eriodic attractor to a chaotic attractor via a SNA through the type-I
intermittency mechanism(@) intermittent SNA forA=1.801 685;

(b) torus atA=1.8017.

bifurcation. At this transition, the dynamics is found to be
again intermittent but of a different type.

To understand more about this phenomenon, let us con-
sider the specific parameter valtie 0.7 and varyA. For A
=1.80165, the attractor is a chaotic orn@l(). As A is in-
creased toA=1.801685, the chaotic attractor transits to a
SNA as shown in Fig. 1&). On increasing the value &
further, an intermittent transition from the SNA to a torus as
shown in Fig. 18) occurs atA=1.8017. At this transition,
abrupt changes in the Lyapunov exponent as well as its vari-
ance show the characteristic signature of the intermittent
route [indicated in Figs. 14) and 14b)] to SNA as in the
type-Ill case. In addition, again the quantify, grows with
N with a power-law relation for the SNA while it is bounded
for the torus regiongsee Fig. 14c)]. However, in the chaotic
region, the quantity’y grows exponentially with\.

Further, the plot of laminar lengtfi) as a function of the
derived bifurcation parameter=A—A., whereA; is the
critical parameter for the occurrence of the intermittent tran-
sition, for this attractor reveals a power-law relationship of
the form

(h=e*, (6)

with an estimated value g8~0.53[Fig. 15a)]. Also, the
plot of the number of laminar periodd(r) vs the period

the SNA is eventually replaced by a one-frequency quasiplength 7 [shown in Fig. 18b)] indicates that after an initial
eriodic orbit through a quasiperiodic analog of saddle-nodeteep decay there is an increase to a large valué(ej. It

2

(b)

@

-

-1

-2 -2
0.5 1

6
FIG. 12. Projection of the attractors of Eq8) for f=0.7 in the

also obeys the relation

N(7)~ 2—1[ T+tar{ arctar( \/:/_u) — Tﬁl

)

- arctar< \/:/_u) T—1? \[S} :

(x,6) plane indicating the transition from a one-frequency quasip-Where ¢ is the maximum value o(t), u=0.9, and e
eriodic attractor to a chaotic attractor via a SNA through the gradual= 0.0005-0.000 03. The above analysis confirms that such

fractalization mechanism@) wrinkled attractor(period 1T) for A
=1.25;(b) SNA atA=1.265.

an attractor is associated with the standard intermittent dy-
namics of type | described in Ref36,37).
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0 VII. SIGNATURES OF FINITE-TIME LYAPUNOV
R EXPONENTS AT THE TRANSITION TO DIFFERENT SNAs

Recently, it was noted by Prasad, Mehra, and Ra-
maswamy[21] that a typical trajectory on a SNA actually
possesses positive Lyapunov exponents in finite time inter-
vals, although the asymptotic exponent is negative. As a con-
sequence, one observes the different characteristics of SNAs
created through different mechanisms by a study of the dif-
ferences in the distribution of finite-time expone®gN,\)

[21]. For each of the cases, the distribution can be obtained
A x 10 by taking a long trajectory and dividing it into segments of
gx10 length N, from which the local Lyapunov exponent can be
calculated. In the limit of largd, this distribution will col-
25 (b) lapse to ad function P(N,\)— 8(A—\). The deviations
> from, and the approach to, the limit can be very different for
SNAs created through different mechanisms. Figures 16 il-
G 15 lustrate the distributions fdP(50,5) across the five different
1 transitions discussed in the present study. A common feature
of these cases is th&(N,\) is strongly peaked about the
Lyapunov exponent when the attractor is a torus, but on the
0 SNA the distribution picks up a tail which extends into the
> 0 S local Lyapunov exponent>0 region. This tail is directly
A x 10 correlated with enhanced fluctuation in the Lyapunov expo-
nent on SNAs. On the fractalized SNA and on doubling of
the SNA, the distribution shifts continuously to larger
Lyapunov exponents, but the shape remains the same for
torus regions as well as SNA regions, while on the HH and
intermittent SNA routes, the actual shapes of the distribution
on the torus and the SNA are very different. One remarkable
feature of intermittent SNAs is that the positive tail in the
distribution decays very slowly.
To quantify further the distribution of finite-time
Lyapunov exponents, let us consider, for example, the frac-
4 tion of exponents lying abova =0, F,(N), vs N for the
different SNAs. It has been found that, except for the inter-
N mittent SNA (for both types Il and ), for which F (N)
~N~#, this quantity decays exponentiallyF . (N)

FIG. 14. Transition from intermittent SNA to a torus through the ~ exp(—+N) for all other transitions, with the exponengs
type-I intermittent mechanism in the regi®i: (a) the behavior of g y dependent strongly on the parameters of the system.
the Lyapunov exponent\(); (b) the variance ¢); (c) plot of phase  For the specific SNAs corresponding to the parameters re-
sensitivity functlonFN_vs N (dotted line corresponds to torus for ported in the previous section these quantities take the fol-
Afl.i_BOl?, dashed line belongs to SNA fér=1.801 685, and lowing values. For type-lil and type-l intermittency, tig
solid line represents chaos far=1.8015). values are 0.38 and 0.71. However, for HH, GF, and IC, the

VI. TRANSITION BETWEEN DIFFERENT SNAs B and « values are 0.27 and 0.32, 0.31 and 0.17, and 0.24

. . and 0.34, respectively.
In the preceding sections, we have enumerated the several

ways by which SNAs are created from torus attractors. One
might observe from the A-f) phase diagram, Fig. 2, that
there are several regions where transitions from one type of In this paper we have described the creation of SNAs
SNA to another type occur along the borders separating quahrough various routes and mechanisms in a protypical ex-
siperiodic and chaotic attractors. In particular, transitions ocample, namely, the quasiperiodically driven cubic map.
cur between GF3 and IC, IC and GF2, GF2 &8) S3 and These are summarized in Table I. Torus-doubling bifurca-
GF1, GF1 and HH, an81 and GF4. On closer scrutiny, we tions are not mandatory for the creation of SNAs. However,
find that there exists a very narrow range of parameters behey are merely a convenient agent in setting the stage for the
tween different regions of SNAs where chaotic motion oc-appearance of SNAs. There are at least four different mecha-
curs. That is, the SNA of one region transits to chaos beforaisms, namely, Heagy-Hammel, gradual fractalization, and
exhibiting a different type of SNA in the next region. How- type-Ill and crisis-induced intermittency, through which the
ever, we refrain from giving finer details as they do not seentruncation of torus doubling and the creation of SNAs occur.
to be of significance. The truncation of torus-doubling and the genesis of

-0.005

-0.01

0.5

VIIl. CONCLUSION
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J FIG. 15. (a) Average laminar length(()) vs
4 200r \2"3 / (A—A,) atf=0.7;(b) number of laminar periods
ol 0.005 | J N(7) of duration 7 in the case of transition
*,. o through type-I intermittency.
1000 | 0.000 | \5\-_#/
1 2 3 4 ‘ 5 ' 6 ‘ 7 ' 8x10° 6 1'0 2'0 9,'0 4'0 5'0
AA, T

SNAs through crisis-induced intermittency is entirely differ- the intermittent SNAs the signature of the transition is a

ent from the interior crisis mechanism for the appearance ofliscontinuous change in both the maximal Lyapunov expo-
SNAs found by Wittet al.[38]. We have further observed at nent and the variance. The chaotic component on the inter-
least two different ways, namely, type-l intermittency andmittent SNA is long lived. As a consequence, a slow positive

gradual fractalization, through which SNAs are formed whentail in P(N,\) and a resulting power-law decay fér_(N)

a transition from a one-frequency torus to chaos takes placean be identified. For the other SNAs, a resulting exponential
All these phenomena have been identified in a two parametetecay forF , (N) has been identified.

(A-f) phase diagram. To distinguish among the different

mechanisms through which SNAs are created, we have ex-
amined the manner in which the maximal Lyapunov expo-

nent and its variance change as a function of the parameters. This work was supported by the Department of Science
In addition, we have also examined the distribution of localand Technology, Government of India. A.V. wishes to ac-
Lyapunov exponents and found that on different SNAs theyknowledge the Council of Scientific and Industrial Research,
have different characteristics. The analysis confirms that ifsovernment of India, for financial support.
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FIG. 16. Distribution of finite-time Lyapunov
exponents on SNAs created through) the
Heagy-Hammel mechanisnib) gradual fractal-
ization, (c) type-lll intermittency, (d) crisis-
induced intermittency, ande) type-l intermit-
tency. Solid and dashed lines correspond to SNA
and torus distributions.
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TABLE I. Routes and mechanisms of the onset of various SNAs in the quasiperiodically forced cubic map.

Characteristic properties

Fraction of Scaling law
positive valued (1)
Type of Lyapunov finite-time Lyapunov ~
route Mechanism exponent Varianceo exponent§F . (N,N)]  (A.—A)* Figures
A. Interruption of torus-doubling
1. Heagy- Collision between a period- Irregular in SNA Small in torus Decays 3and 4
Hammel[8] doubled torus and its region and smooth  and large in SNA exponentially
unstable parent in torus
2. Gradual Torus gets increasingly Increases slowly No significant Decays 5and 6
fractalization[9] wrinkled and transforms during the changes exponentially
into a SNA without any transition from torus
interaction with a nearby to SNA
unstable periodic orbit
3. Type-lll During the transition from Abrupt change Abrupt increase Power-law a~1.1 7, 8,
intermittency torus-doubled attractor to during the at the variation [see also and 9
[19] SNA, a growth of subharmonic transition from transition point [z
amplitude begins, torus to SNA
together with a decrease
in the size of the
fundamental amplitude
4. Crisis-induced Doubling of destroyed torus Does not follow Irregular variation Decays 10
intermittency involves a kind of sudden uniform pattern in SNA region exponentially and 11
widening of the attractor
B. Transition from one-frequency torus
1. Gradual Torus gets increasingly Increases slowly No significant Decays 12
fractalization wrinkled and transforms during the transition change exponentially
[9] into a SNA from torus to SNA
2. Type-I Torus is eventually Abrupt change Abrupt increase Power-law  a~0.55 13, 14,
intermittency replaced by SNA during the at the transition variation [see also and 15,
[21] through an analog transition from point ET)]
of the saddle-node torus to SNA
bifurcation

APPENDIX: CHARACTERIZATIONS OF THE SNA So, starting from a suitable initial derivatiyéx,/Jd6|, one

1. Phase sensitivity exponent can obtain derivatives at all points of the trajectory,

In order to distinguish between the smooth and the fractal
torus (SNA and chaos we examine the attractor with refer- N
ence to the phasé of the external force. Even though no XN _ _ .
exponential divergence of orbits exists for either the smoothgg == gl 2mQ Sin(2 by—1)

1

or the fractal torugSNA), they are different from each other

in terms of the phase sensitivity. Pikovsky and Feudal k- ) Nt 5. %o
[23,24] have shown how two points on the SNA that have X iHO —(A=3X )|+ iHo (_(A_3Xi )%>,
close# values can be separated from each other by introduc- - -

ing the phase sensitivity exponent. To appreciate this, we (A2)

note that the absolute value of the first derivative of the orbit

|ox,106,| fluctuates with time and sometimes has large

bursts. To see this, one can proceed as follows. An arbitrarilyvith the condition that fok=N
large burst can appear when the system is iterated for infinite

time steps. By differentiating E¢3), one obtains

IXn+1
a0

N—k—1
=-27Q sin(2770)—(A—3xﬁ)(2—);]. (A1) i1:[0 [—(A=3x¢.)]=1.
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Naturally, in the case of a smooth attractor, if one iterates The variation of the local Lyapunov exponents in a fixed
Egs. (Al) and (A2) starting from aribitrary values of and  time intervalt can also be discussed by examining the prob-
axl a6 and for largeN, they converge to the attractor and its ability distributionsP(t,\) for the exponents. In facB(t,\)
derivative, respectively. Thus, partial sunSy computed corresponds to counting the normalized number of times any
from (A2) are bounded by the maximum derivative/9#  one of thex appears for fixed timé That is, the distribution
along the attractor. But in the case of a fractal attractor thef local Lyapunov exponents, which is a stationary quantity,
attractor is nonsmooth and the derivativg/d6 does not is defined a$33]

exist, so the consideration above is no longer valid. This can

be illustrated by calculating the partial suiBg as given by P(t,\)d\=probability that A (t) takes a value between

Eqg. (A2). It has been foundi23,24] that the behavior of the

sum can be very intermittent. The key observation is that A and A+dX. (AB)
these sums are quite large and essentially unbounded. Hen

: Shis is particularly useful in describing the structure and dy-
we plot the maximum ofSy|,

namics of nonuniform attractors. In the asymptotic lirnit
— oo, this distribution will collapse to & function,
yn(X, 8) =max Sy|. (A3)
P(t,\)—S8(A—N\).

The value ofyy grows withN, which means that arbitrarily
|arge values ofSN| appear. From this it follows immediate|y The deviations from this limit for finite times, and the as-
that the attractor cannot have a finite derivative with respecymptotics, namely, the approach to the limit, can be very
to the external phase if the attractor is nonsmooth. Consd€vealing of the underlying dynami¢&1].
quently, the assumption of a finite derivative is inconsistent One can also calculate the arithmetic mean of all the dis-
with the relation(A2), where the second term on the right- tributions and obtain the variance of the Lyapunov exponent
hand side RHS) is exponentially small and the first term on A as
the RHS can be arbitrarily large. Thus, by calculating the
partial sumgA2), we can distinguish between strangems
are unboundedand nonstrangésums are boundedattrac-
tors.

The growth rate of the partial sums with time representDividing the total length of the orbit intd/ bins as before
the degree of strangeness of the attractor, and can be useda®l defining the local Lyapunov exponents\as replacing
a quantitative characteristic of SNAs. For this purpose, weP(t,\;) by 6(A—A\;)/M, the above equation of variance
require a quantity that is independent of a particular trajecgoes over to the form given by EGA5).
tory while it represents the average properties of the attrac-
tor. The appropriate quantity seef3,24] to be the mini- 3. Power spectrum analysis
mum value of yy(x,6) with respect to randomly chosen
initial points (X, 6):

o= F (A—N)2P(t,\)d\. (A7)

To quantify the changes in the power spectrightained
using the fast Fourier transform techniguene can compute
. the so called spectral distribution functidi{ o), defined to
Fy=minyn(x,6). (A4) be the number of peaks in the Fourier amplitude spectrum
larger than some value, say. Scaling relations have been
It allows a more reliable inference about whether the attraCpredicted forN(o) in the case of two- and three-frequency
tor is nonsmooth. One can also infer from B44) thatl'y  quasiperiodic attractors and strange nonchaotic attractors.
grows |nf|n|te|y for a SNA with some relation such Eﬁ These Sca”ng relations awo-)wh'](l/o-), N(a')~|n20', and
:N’u, Whel’e,u is a pOSitiVe quantity that characterizes the N(O')""O'iﬂ, respectively, Corresponding to the two- and
SNA; we call it the phase sensitivity exponent. However, inthree-frequency quasiperiodic and strange nonchaotic attrac-
the case of a chaotic attractor, it grows exponentially With  tors. In the work of Dinget al.[13], the power-law exponent
was found empirically to lie within the range<l@<2 for
2. Variation of finite-time Lyapunov exponents the strange nonchaotic attractor.

Since the finite-time or local Lyapunov exponenis ,{
=1,2,... M) depend on the initial conditions, it will be
relevant to consider the variance of the average Lyapunov To quantify geometric properties of attractors, several
exponentA about the);’s, i=1,2,... M. It is defined methods have been used to compute the dimension of the
[17,21,33,3%as attractors. From them, we have used the correlation dimen-

sion (introduced by Grassberger and Procaddi@]) in our

4. Dimensions

1 X ) present study, which may be computed from the correlation
=M Z«l [A=Ni(N)]*. (A5)  function C(R) defined as
1 N
In all our numerical calculations, we take¢=50 and M C(R)= lim N > H(R—[xi—x;]) |,
=10°. N N7 i7=1
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where x; and x; are points on the attractoH(y) is the C(R)~RY as R—O.

Heaviside function(1 if y=0 and 0 ify<0), andN is the

number of points randomly chosen from the entire data sefTherefore the correlation dimensidd) is the slope of a
The Heaviside function simply counts the number of pointsgraph of logC(R) versus logyR. Once one obtains the di-
within the radiusR of the point denoted by; and C(R) mensions of the attractors, it is easy to quantify the strange
gives the average fraction of points. Now the correlation diproperty of the attractors. In all our studies, we have verified
mension is defined by the variation G{R) with R: that the SNAs have noninteger correlation dimensions.
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