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Interruption of torus doubling bifurcation and genesis of strange nonchaotic attractors
in a quasiperiodically forced map: Mechanisms and their characterizations

A. Venkatesan and M. Lakshmanan
Centre for Nonlinear Dynamics, Department of Physics, Bharathidasan University, Tiruchirapalli 620 024, India

~Received 18 May 2000; published 26 January 2001!

A simple quasiperiodically forced one-dimensional cubic map is shown to exhibit very many types of routes
to chaos via strange nonchaotic attractors~SNAs! in a two-parameter (A-f ) space. The routes include transi-
tions to chaos via SNAs from both a one-frequency torus and a period-doubled torus. In the former case, we
identify the fractalization and type-I intermittency routes. In the latter case, we point out that at least four
distinct routes for the truncation of the torus-doubling bifurcation and the creation of SNAs occur in this
model. In particular, the formation of SNAs through Heagy-Hammel, fractalization, and type-III intermittent
mechanisms is described. In addition, it has been found that in this system there are some regions in the
parameter space where a dynamics involving a sudden expansion of the attractor, which tames the growth of
period-doubling bifurcation, takes place, creating the SNA. The SNAs created through different mechanisms
are characterized by the behavior of the Lyapunov exponents and their variance, by the estimation of the phase
sensitivity exponent, and through the distribution of finite-time Lyapunov exponents.
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I. INTRODUCTION

Torus-doubling bifurcation ~geometrically similar to
period-doubling bifurcation! as a universal route to chaos h
been one of the leading topics of research in the study
quasiperiodically forced chaotic dynamical systems dur
the past few years@1–6#. The existence of such an exot
bifurcation in several experimental situations and theoret
models indicates the importance of this bifurcation in i
proving our understanding of the qualitative and quantitat
behaviors of dynamical systems@1–11#. A very common ob-
servation is that such systems do not undergo an infi
sequence of doubling bifurcations as in the case of lo
dimensional systems; instead, the truncation of torus d
bling begins when the doubled torus becomes extrem
wrinkled and then gets destroyed. Such a destroyed torus
geometrically strange~fractal dimensional! object in the
phase space, a property that usually corresponds to a ch
attractor. However, it does not exhibit sensitivity to initi
conditions asymptotically~for example, Lyapunov exponent
are nonpositive! and hence is not chaotic and so it is
strange nonchaotic attractor~SNA! @12–29#. Actually the ex-
istence of SNAs was first identified by Grebogiet al. @12# in
their work on the transition from a two-frequency torus
chaos via a SNA. Later on, it was found that these attrac
can arise in physically relevant situations such as a qua
eriodically forced pendulum@14,22#, quantum particles in
quasiperiodic potentials@14#, biological oscillators @15#,
Duffing-type oscillators@16–18#, velocity-dependent poten
tial systems@11#, electronic circuits@19,20#, and in certain
maps@21–26#, with different transitions to SNAs including
the torus-doubling bifurcation and the creation of SNA
Also, the existence of torus-doubling truncation and the
pearance of SNAs was confirmed by an experiment o
quasiperiodically forced, buckled magnetoelastic ribb
@27#. Besides this experiment, exotic strange nonchaotic
tractors were studied in analog simulations of a multista
1063-651X/2001/63~2!/026219~14!/$15.00 63 0262
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potential@28#, and in a neon glow discharge experiment@29#
through different transitions to SNAs. The existence
SNAs in such physically relevant systems has naturally m
tivated further intense investigations on their nature and
currence.

A subject of intense further interest is the way in whi
the truncation of period doubling creates SNAs. In particu
it has been found that the creation of SNAs often occurs
to the collision of a period-doubled torus with its unstab
parent so that a period-2k torus gives rise to a 2k21-band
SNA @8#, or a gradual fractalization of the torus, in which
period-2k torus approaches a 2k-band SNA@9#. Recently, the
present authors have shown that the torus-doubling sequ
is tamed due to a subharmonic bifurcation~subcritical
period-doubling bifurcation! leading to the creation of SNAs
In addition, this transition has been shown to exhibit type-
intermittent characteristic scaling@17,19#. Apart from the
creation of SNAs due to the collapse of the tori, the auth
have also shown that there are some regions of the sys
parameters where the torus-doubling sequence is trunc
by a merging bifurcation leading to the formation of a tor
bubble @11#, reminiscent of period bubbles in low dimen
sional systems. Also, using the renormalization group
proach, Kuznetsov, Feudal, and Pikovsky have revealed s
ing properties both for the critical attractor and for th
parameter plane topography near the terminal point of
torus-doubling bifurcation@10# in connection with this colli-
sion scenario.

Besides the creation of SNAs through the truncation
torus-doubling bifurcation, several other mechanisms h
also been studied in the literature. The most common
gradual fractalization of a torus where an amplitude or ph
instability causes the collapse of the torus@9#. This is in fact
one of the least understood mechanisms for the formatio
SNAs since there is no apparent bifurcation, unlike the to
collision mechanism identified by Pikovsky amd Feud
where a stable torus and an unstable torus collide at a d
set of points, leading to the creation of SNAs@23#. Prasad,
©2001 The American Physical Society19-1
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A. VENKATESAN AND M. LAKSHMANAN PHYSICAL REVIEW E 63 026219
Mehra, and Ramaswamy@21# have shown that a quasiper
odic analog of a saddle-node bifurcation gives rise to SN
through an intermittent route with the dynamics exhibiti
scaling behavior characteristic of type-I intermittency. Y
cinkaya and Lai have shown that an on-off intermittency c
be associated with SNA creation through a blow-out bif
cation when a torus loses its transverse stability@18#. Other
than these scenarios, a number of other quasiperiodic ro
to SNAs have been described in the literature@13,25#. They
include the existence of SNAs in the transition from tw
frequency to three-frequency quasiperiodicity@13#, transition
from three-frequency quasiperiodicity to chaos via a SN
and transition to chaos via strange nonchaotic trajectorie
a torus@25#.

Considering particularly the different routes discuss
above for the inhibition of the torus-doubling sequence a
the creation of SNAs, we note that they have so far b
identified essentially indifferent dynamical systems. How
ever, it is important to study the truncation of the toru
doubling bifurcations and the appearance of SNAs in a sin
system in order to understand the mechanisms and their c
acteristic features clearly. In this connection, we conside
simple model in the form of a one-dimensional cubic ma

xi 1152Axi1xi
3 , ~1!

which is quite analogous to the typical Duffing oscillat
@30,31#. The existence of different dynamical features of th
system has been studied in Refs.@31,32#. In the present
work, we investigate the dynamics of~1! with the addition of
a constant bias,

xi 115Q2Axi1xi
3 , ~2!

and also subject to an additional quasiperiodic forcing,

xi 115Q1 f cos~2pu i !2Axi1xi
3 ,

u i 115u i1v~mod 1!, ~3!

and show that the latter is a rich dynamical system in co
parison with the former, possessing a vast number of regu
strange nonchaotic and chaotic attractors in a two-param
(A-f ) space for a fixedQ. In particular, we focus our atten
tion mainly on the truncation of torus-doubling bifurcatio
leading to the creation of SNAs and the mechanisms
which they arise in a range of the two-parameter (A-f )
space, besides pointing out the standard transitions to c
via SNAs from a one-frequency torus. A variety of tran
tions from a truncated doubled torus to SNAs can be ide
fied, characterized, and distinguished in this system.

To start with, we show that the system~2! undergoes one
or more period doublings but it need not complete the en
Feigenbaum cascade, and that it may be possible to h
only a finite number of period doublings, followed by, fo
example, undoubling or other bifurcations in the presence
constant bias, as was shown by Bier and Bountis in differ
systems@32#. The possibility of such a different remergin
bifurcation phenomenon in the torus-doubling sequence
reported in the present case, when the system~2! is subjected
02621
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to quasiperiodic forcing as in model~3!. As the system~3!
possesses more than one control parameter and remain
variant under reflection symmetry, remerging is likely to o
cur, as in the absence of quasiperiodic forcing in the sys
~2!. Our numerical study shows that for a fixed value ofQ in
some regions of the (A-f ) parameter space a torus-doubl
orbit emerges and remerges from a single-torus orbit at
different parameter values off to form a single torus bubble
Such a remerging bifurcation can retard the growth of
torus-doubled bifurcations and the development of the as
ciated universal route to chaos further. However, the na
of the remerging torus-doubled bifurcation or, more spec
cally, the torus bubbling ensures the existence of differ
routes for the creation of SNAs when the full range of p
rameters is explored. To illustrate such possibilities in
present system in the two-parameter (A-f ) space, we first
enumerate three standard types of route to a SNA, nam
~1! the Heagy-Hammel~collision of the period-doubled toru
with its unstable parent!, ~2! the gradual fractalization~am-
plitude or phase instability!, and ~3! the type-III intermit-
tency ~subharmonic instability! routes through which the
truncation of torus-doubling bifurcation occurs, leading
the creation of SNAs within the torus bubble region.

In addition, we identify that in some cross sections of t
(A-f ) parameter space, particularly within the torus bub
region, the period-doubling bifurcation phenomenon s
persists in the destroyed torus, even though the actual d
bling of the torus itself has been terminated. However,
show thatthe dynamics involved in this transition is a su
den expansion in the attractor. This transition looks like the
interior crisis that occurs in low dimensional chaotic syste
@33#. We also demonstrate the occurrence of SNAs throu
gradual fractalization and type-I intermittency, during t
transition from one-frequency quasiperiodicity to chaos t
exists outside the torus bubble region.

In all our studies the transitions to different SNAs at d
ferent parts of the border in the (A-f ) parameter plane and
their characterization are carried out on the basis of spe
quantities such as Lyapunov exponents and their varianc
well as finite-time Lyapunov exponents, dimensions, pow
spectral measures, and phase sensitivity exponents. Brie
tails of these characterizing quantities are given in the A
pendix. In Sec. II we describe the phenomenon of the
merging of the Feigenbaum tree in the absence
quasiperiodic forcing in the map~2!. The existence of re-
merging torus-doubling is pointed out in Sec. III. Variou
transitions to SNAs through the truncated doubled torus
demonstrated in Sec. IV. In particular, the truncation of t
torus-doubling bifurcation and the creation of SNAs throu
torus collision, fractalization, and type-III intermitten
mechanisms are explained. Further, a sudden expansio
the attractor causing the truncation of torus-doubling bif
cation and the genesis of a SNA is also demonstrated. In
V, the transition from a one-frequency torus to a SN
through type-I intermittent as well as fractalization mech
nisms is described. In Sec. VI the transitions between dif
ent SNAs are discussed. In Sec. VII we address the issu
distinguishing among SNAs formed by different rout
9-2
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INTERRUPTION OF TORUS DOUBLING BIFURCATION . . . PHYSICAL REVIEW E63 026219
through the use of finite-time Lyapunov exponents. Fina
in Sec. VIII, the results are summarized.

II. REMERGING OF FEIGENBAUM TREES IN THE
ABSENCE OF QUASIPERIODIC FORCING

To start with, we consider the system~2! and numerically
iterate it by varying the values ofA andQ. For anyQ value
and low A values, the system~2! exhibits periodic oscilla-
tions with period 1T. As A increases, a bifurcation occur
and the stable period-T orbit transits into a stable period-2T
bubble, as shown in Fig. 1~a!. For example, when the valu
of Q exceeds a certain critical valueQ520.99 for a fixedA,
A51.5, a transition from a period-T orbit to a period-2T
orbit occurs on increasingQ, essentially due to period
doubling bifurcation. Then the period-2T attractor merges
and forms a period-T attractor when the value ofQ increases
to Q50.99 at the same fixedA. At even higher values ofA,
A51.7, the primary period-2T bubble bifurcates into sec
ondary period-4T bubbles, as shown in Fig. 1~b!. This
bubble develops into further bubbles asA gets larger, until an
infinitely branched Feigenbaum tree leading to the onse
chaos finally appears, as shown in Fig. 1~c! for A51.8.

Bier and Bountis showed that such a remerging of Feig
baum trees is quite common in certain models possessi
kind of reflection symmetry property coupled with more th
one parameter@32#. Further, they added that the formation
the primary period-2T bubble is seen to lead to higher ord
bubbles and the development of the associated unive
route to chaos in these systems. It is also stated in the lit
ture that the reversal of period doubling occurs when
system possesses a positive Schwarzian derivative at th
furcation point@34,35#. This is true for the present case th
we study. However, there are some counterexamples
pointed out by Nusse and Yorke@35#, to show that the posi-
tivity of the Schwarzian derivative is not a sufficient cond
tion to rule out period-halving bifurcations.

FIG. 1. Bifurcation diagram for the map~2! in the (x,Q) plane.
~a! The primary bubble atA51.5, ~b! period-2 and period-4
bubbles atA51.7, ~c! period-doubling route to chaos and inver
period doubling atA51.8.
02621
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In the present paper, our aim is to investigate the effec
a quasiperiodic forcing on the system~2! as given by Eq.~3!.
In particular, we point out that, with the addition of quasi
eriodic forcing for a fixedQ, the dynamics is dominated b
quasiperiodic attractors and transitions to chaos via stra
nonchaotic attractors along different routes in contrast to
type of attractors shown in Fig. 1. For this purpose we a
work out a two-parameter (A-f ) phase diagram~Fig. 2! to
identify the changes in the dynamics.

III. SNAs IN THE QUASIPERIODICALLY FORCED
CUBIC MAP

Now we consider the dynamics of the quasiperiodica
driven map~3! and numerically iterate it with the value o
the parameterv fixed atv5(A521)/2 and by varying the
values ofA and f for different fixed values ofQ. The results
are then summarized in a suitable two-parameter (A-f ) phase
diagram for each fixed value ofQ. Various dynamical
behaviors—quasiperiodic, strange nonchaotic, and cha
attractors—have been identified by characterizing the att
tors by quantities such as Lyapunov exponents and their v
ance as well as finite-time Lyapunov exponents, dimensio
power spectral measures, and phase sensitivity expon
~for details, see the Appendix!.

In the absence of external forcing (f 50), from Fig. 1, we
can easily check that for fixedQ and for givenA the dynam-
ics corresponds to periodic or chaotic attractors. For insta
for Q50 and for any value ofA, the system admits a
period-2 solution. Similarly, forQ50.25 andA51.8, it is a
period-4 orbit, while forQ50.5 andA51.8, it is a chaotic

FIG. 2. Phase diagram for quasiperiodically forced cubic m
Eq. ~3!, in the (A-f ) parameter space forQ50. Here 1T and 2T
correspond to tori of period 1 and 2, respectively. GF1, GF2, G
and GF4 correspond to the regions where the process of gra
fractalization of the torus occurs. HH represents the region wh
the SNA is created through the Heagy-Hammel route.S1 andS3
denote regions where the SNA appears through type-I and typ
intermittencies, respectively. IC denotes the region where the S
is created through crisis-induced intermittency.C1 andC2 corre-
spond to chaotic attractors.
9-3
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orbit. We now include the effect of quasiperiodic forcin
( f Þ0) and analyze the dynamics involving torus, perio
doubled torus and chaos via SNAs. A very clear picture
the various types of transition becomes available for the c
Q50 in the regionf P(20.8,0.8) andAP(0.8,2.4), while
similar structure arises in a larger region for other values
Q. Consequently, we present in the following results forQ
50 only in the form of the phase diagram in Fig. 2. T
various features indicated in Fig. 2 are summarized and
dynamical transitions are discussed in the following.

The general features of the phase diagram fall into a v
interesting pattern. It can be observed from Fig. 2 that
dynamics is symmetric aboutf 50. Therefore, in the follow-
ing we present the details for the right of thef 50 line only.
The features are exactly similar in the left half of the d
gram. There are two chaotic regionsC1 andC2. Bordering
these chaotic regions, one has the regions where the at
tors are strange and nonchaotic. Such SNAs are foun
appear in a large number of regions under various mec
nisms, some of which are marked GF1, GF2, GF3, and G
HH, IC, S1, and S3. Besides the strange nonchaotic a
chaotic attractors in the phase diagram Fig. 2, one can
observe different regions where quasiperiodic attractors
be found. In Fig. 2, such regions are marked as 1T and 2T,
corresponding to the quasiperiodic attractors of period 1
period 2, respectively. Fuller details are given below.

For low A and anyf value, the system exhibits quasipe
odic oscillations denoted by 1T in Fig. 2. On increasing the
value ofA further, the fascinating phenomenon of the tor
bubble appears within a range of values off. To be more
specific, the parameterA is, for example, fixed atA51.1 and
thenf is varied. Forf 520.3, the attractor is a quasiperiod
one (1T). As f is increased tof 520.18, the attractor under
goes torus-doubling bifurcation and the corresponding o
is denoted as 2T in Fig. 2. Asf is increased further, one the
expects that the doubled attractor continues the doubling
quence as in the case of the generic period-doubling p
nomenon. Instead, in the present case, the doubled attr
begins to merge into a single attractor atf 50.18, leading to
the formation of a torus bubble reminiscent of period bubb
in low dimensional systems, as in the previous section.
refixing the parameterA at higher values, one finds that the
are two prominent regions of chaotic oscillationsC1 andC2
as shown in Fig. 2. The chaotic regionC1 exists outside the
torus bubble region. That is, it essentially occurs for large
values,A.1.2 andf .0.6. On the other hand, the regionC2
emerges within the torus bubble region. That is, it appe
predominantly for even larger values ofA, A.1.549 andf
lying between20.8 and 0.8. We have identified two inte
esting dynamical transitions from one-frequency quasip
odicity to chaos via SNAs outside the torus bubble regi
They are~1! gradual fractalization of the torus leading
creation of a SNA~GF4!, and ~2! the type-I intermittent
route leading to the creation of a SNA (S1). There also exist
at least four types of transition to chaos via SNAs within t
torus bubble where the doubling of the torus is interrupt
namely,~1! Heagy-Hammel~HH!, ~2! gradual fractalization
~GF1, GF2, and GF3!, ~3! type-III intermittent (S3), and~4!
doubling of destroyed tori routes, through which the toru
02621
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doubling bifurcation is truncated and the creation of
strange nonchaotic attractor takes place. The details for e
of the regions are given in the following sections.

IV. DYNAMICS WITHIN THE TORUS BUBBLE

In this section, we will describe each one of the four typ
of transitions to chaos via SNAs within the torus bubb
region in detail.

A. Heagy-Hammel route

The first of the routes that we encounter is the Hea
Hammel route in which a period-2n torus gets wrinkled and
upon collision with its unstable parent the period-2n21 torus
bifurcates into a SNA@8#. Such a route has been identified
the region C2 within the range ofA values 1.549,A
,2.183 andf values 0.39, f ,0.8. That is, the doubling bi-
furcation is truncated due to the collision of the doubl
torus with its unstable parent on increasing the value ofA in
the range 1.549,A,2.183, for a fixedf value (0.39, f
,0.8). This route is denoted as HH in Fig. 2. For examp
let us fix the parameterf at f 50.7 and varyA. For A51.8,
the attractor is a quasiperiodic one, as denoted by 1T in Fig.
2. As A is increased toA51.876, the attractor undergoe
torus-doubling bifurcation and the corresponding perio
orbit is denoted as 2T in Fig. 2. In the generic case, th
period doubling occurs in an infinite sequence until the
cumulation point is reached, beyond which chaotic behav
appears. However, with tori, in the present case, the trun
tion of the torus-doubling begins when the two strands of
2T attractor become extremely wrinkled. For example, wh
the value ofA is increased toA51.8868, the attractor be
comes wrinkled as shown in Fig. 3~a!. At this transition, the
strands are seen to come closer to the unstable periodT
orbit, lose their continuity when the strands of the toru
doubled orbit collide with the unstable parent, and ultimat
result in a fractal attractor as shown in Fig. 3~b! whenA is
increased toA51.886 97. At such a value, the attractor, Fi
3~b!, possesses a geometrically strange property but does
exhibit any sensitivity to initial conditions@the maximal
Lyapunov exponent is negative as seen in Fig. 4~a!# and so it
is indeed a strange nonchaotic attractor. At this transition,
two branches of the wrinkled attractor collide and form
one-band SNA. This kind of transition is similar to the a

FIG. 3. Projection of the attractors of Eqs.~3! for f 50.7 in the
(x,u) plane indicating the transition from quasiperiodic attractor
chaotic attractor via a SNA through the Heagy-Hammel mec
nism: ~a! wrinkled attractor~period-2T) for A51.8868;~b! SNA at
A51.886 97.
9-4
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INTERRUPTION OF TORUS DOUBLING BIFURCATION . . . PHYSICAL REVIEW E63 026219
tractor merging crisis occurring in chaotic systems@33#. As
A is increased further toA51.8878, the attractor eventuall
has a positive Lyapunov exponent and hence it correspo
to a chaotic attractor (C2).

Now we examine the Lyapunov exponent for the tran
tion from torus to SNA. Figure 4~a! is a plot of the maximal
Lyapunov exponent as a function ofA for f 50.7. When we
examine this in a sufficiently small neighborhood of the cr
cal valueAHH51.886 97, the transition is clearly revealed
the Lyapunov exponent, which varies smoothly in the to
region (A,AHH) while it varies irregularly in the SNA re-
gion (A.AHH). It is also possible to identify this transitio
point by examining the variance of the Lyapunov expone
as shown in Fig. 4~b!, in which the fluctuation is small in the
torus region while it is large in the SNA region.

In addition, in order to distinguish the quasiperiodic a
tractor and the strange nonchaotic attractor, we may exam
the attractor with reference to the phaseu of the external

FIG. 4. Transition from doubled torus to SNA through Heag
Hammel mechanism in the region HH:~a! the behavior of the
Lyapunov exponent (L); ~b! the variance (s); ~c! plot of phase
sensitivity functionGN vs N ~dotted line corresponds to torus fo
A51.83, dashed line belongs to SNA forA51.886 97, and solid
line represents chaos forA51.8878).
02621
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force. The details of this analysis are given in the Append
From Eq.~A4!, one infers that the functionGN grows infi-
nitely for a SNA with some relation such asGN5Nm, where
m is a positive quantity that characterizes the SNA; we m
call it the phase sensitivity exponent. For the present cas
is m50.98. However, in the case of a chaotic attractor
grows exponentially withN @see Fig. 4~c!#.

B. Fractalization route

The second of the routes is the gradual fractalization ro
where a torus gets increasingly wrinkled and then transit
a SNA without interaction~unlike the previous case! with a
nearby unstable orbit as we change the system paramete
this route, a period-2n torus becomes wrinkled and then th
wrinkled attractor gradually loses its smoothness and form
2n-band SNA as we change the system parameter. Su
phenomenon has been identified in the present system
three different regions indicated as GF1, GF2, and GF3
Fig. 2. To exemplify the nature of this transition, we fix th
parameterf at f 50.1 and varyA in the GF3 region. ForA
51.0, the system exhibits quasiperiodic oscillation of per
1T. The attractor undergoes a torus-doubling bifurcation
A is increased toA51.06. On increasing theA value further,
a second period doubling of the doubled torus does not t
place. Instead, oscillations of the doubled torus in the am
tude direction start to appear atA52.165 as shown in Fig
5~a!. As A is increased further toA52.167, the oscillatory
behavior of the torus gradually approaches a fractal nat
At such values, the nature of the attractor is strange@see Fig.
5~b!# even though the largest Lyapunov exponent in Fig. 6~a!
remains negative. Such a phenomenon is essentiall
gradual fractalization of the doubled torus as was shown
Nishikawa and Kaneko in their route to chaos via a SNA@9#.
In this route, there is no collision involved among the orb
and therefore the Lyapunov exponent increases only slow
as shown in Fig. 6~a!, and there are no significant changes
its variance@see Fig. 6~b!#. Further, the phase sensitivit
functionGN grows unboundedly with the power-law relatio
GN5Nm, m50.83, in the SNA region, while it is bounded i
the torus region@see Fig. 6~c!#. At even higher values ofA,
A52.17, the system exhibits chaotic oscillations (C2). The
quantity GN grows exponentially withN for the chaotic at-
tractors.

FIG. 5. Projection of the attractors of Eqs.~3! for f 50.1 in the
(x,u) plane indicating the transition from quasiperiodic attractor
chaotic attractor via a SNA through the gradual fractalizat
mechanism:~a! wrinkled attractor~period 2T) for A52.165; ~b!
SNA at A52.167.
9-5
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C. Type-III intermittent route

The third of the routes that is predominant in this syst
within the torus-doubled region is an intermittent route
which the torus-doubling bifurcation is tamed due to subh
monic bifurcations leading to the creation of a SNA. Suc
phenomenon has been identified within the range off values
0.33, f ,0.41 and on increasing the value ofA, 1.81,A
,2.18, for a fixedf. To illustrate this transition, let us fix th
parameterf at f 50.35 and varyA. For A51.0, the attractor
is a quasiperiodic attractor. AsA is increased toA51.28, the
attractor undergoes a torus-doubling bifurcation. On incre
ing the value ofA further, A52.13, the attractor starts t
wrinkle. On further increase ofA to A52.135, the attractor
becomes extremely wrinkled and has several sharp bend
shown in Fig. 7~a!. It has been observed in lower dime
sional chaotic systems@35,36# that when the system unde
goes subcritical period-doubling bifurcation the dynami

FIG. 6. Transition from doubled torus to SNA through gradu
fractalization mechanism in the region GF3:~a! the behavior of the
Lyapunov exponent (L); ~b! the variance (s); ~c! plot of phase
sensitivity functionGN vs N ~dotted line corresponds to torus fo
A51.85, dashed line belongs to SNA forA52.167, and solid line
represents chaos forA52.17).
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behavior exhibits type-III intermittent motion. In a simila
manner, one finds that the wrinkled attractor undergoe
quasiperiodic analog of the subcritical period-doubling bifu
cation on increasing the value ofA further toA52.14. The
corresponding intermittent motion is shown in Fig. 7~b!. The
emergence of such intermittent dynamical behavior has b
found in different continuous systems by the present auth
and their collaborators through the intermittent route
chaos via SNA@17#, where it was shown that during th
transition from torus-doubled attractor to SNA growth of
subharmonic amplitude begins together with a decreas
the size of the fundamental amplitude. At the critical para
eter value, the intermittent attractor loses its smoothness
becomes strange. The attractor shown in Fig. 7~b! is nothing
but a strange nonchaotic one as the Lyapunov exponent t
out to be negative@Fig. 8~a!#. On examining the Lyapunov
exponent at this transition, it is observed in Fig. 8~a! that the
Lyapunov exponent shows an abrupt change with a pow
law dependence on the parameter on the SNA side of
transition and the variance shows a remarkable and ab
increase at the transition point as shown in Fig. 8~b!. Further,
the phase sensitivity functionGN is bounded for the torus
region while it is unboundedly changing with a power-la
variation with N for the SNA region@Fig. 8~c!# with m
50.85. On increasing the value ofA further toA52.153, we
find the emergence of a chaotic attractor (C2) where the
quantityGN grows exponentially with N@Fig. 8~c!#.

In the HH case, the points on the SNA are distributed o
the entire region enclosed by the wrinkled bounding tor
while in the GF case the points on the SNA are distribu
mainly on the boundary of the torus. Interestingly, in t
present case shown in Fig. 7~b!, most of the points of the
SNA remain within the wrinkled torus with sporadic larg
deviations. The dynamics at this transition obviously
volves a kind of intermittency. Such an intermittency tran
tion could be characterized by scaling behavior. The lami
phase in this case is the torus while the burst phase is
nonchaotic attractor. In order to calculate the associated s
ing constant, we coevolve the trajectories for two differe
values ofA, namely,Ac and another value near toAc , while
keeping identical initial conditions (xi ,u i) as well as the
same parameter valuef. As the angular coordinateu i remains
identical, the difference inxi allows one to compute the av

l

FIG. 7. Projection of the attractors of Eqs.~3! for f 50.35 in the
(x,u) plane indicating the transition from quasiperiodic attractor
chaotic attractor via a SNA through the type-III intermittent mech
nism: ~a! wrinkled attractor~period 2T) for A52.135;~b! SNA at
A52.14.
9-6
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INTERRUPTION OF TORUS DOUBLING BIFURCATION . . . PHYSICAL REVIEW E63 026219
erage laminar length between the bursts, and it fits the s
ing form

^ l &5~Ac2A!2a. ~4!

The numerical value obtained for the attractor shown in F

FIG. 8. Transition from doubled torus to SNA through type-
intermittent mechanism in the regionS3: ~a! the behavior of the
Lyapunov exponent (L); ~b! the variance (s); ~c! plot of phase
sensitivity functionGN vs N ~dotted line corresponds to torus fo
A51.83, dashed line belongs to SNA forA52.14, and solid line
represents chaos forA52.15).
02621
al-

.

7~b! is a;1.1 @see Fig. 9~a!#. To confirm further that the
SNA attractor@Fig. 7~b!# is associated with intermittent dy
namics, we plot the frequency of laminar periods of durat
t, namely,N(t) in Fig. 9~b!. It obeys the scaling@37# law

N~t!;H exp~24et!

@12exp~24et!#J
0.5

. ~5!

We find that e50.00760.0002 gives the best fit for the
present data. These characteristic studies suggest that th
termittency is of type III as discussed by Pomeau and M
neville in low dimensional systems@36,37#.

D. Crisis-induced intermittency

In the preceding subsections, we have seen that
period-doubling bifurcation of a torus has been truncated
its destruction, leading to the emergence of a SNA in cert
regions of the (A-f ) parameter space. Further, we obser
that in the present system in some cross sections of the (A-f )
parameter space the period-doubling phenomenon still
sists in the destroyed torus even though the actual doub
phenomenon has been truncated. But in the present case
observed that the doubling of the destroyed torus involve
kind of sudden widening of the attractor similar to the cris
phenomenon that occurs in chaotic systems. Such a phen
enon has been observed in the present model in a rangef
values, 0.13, f ,0.24, and for a narrow range ofA values,
2.12,A,2.14. It is denoted as IC in Fig. 2. For example,
us choosef 50.2 and vary the value ofA. For A50.8, the
attractor is a quasiperiodic one. AsA is increased toA
51.18, the system undergoes torus-doubling bifurcation.
increasing the value ofA further to A52.138, the attractor
begins to wrinkle as shown in Fig. 10~a!. On increasing the
value ofA further, say, toA52.1387 the wrinkled attracto
undergoes torus-doubling bifurcation and the correspond
orbit is shown in Fig. 10~b!. It is also seen from Figs. 10~b!
and 10~c! that whenA is slightly larger thanAIC52.1387 the
orbit on the attractor spends long stretches of time in
region to which the attractor was confined before the cri
At the end of these long stretches the orbit bursts out of
old region and bounces around in the new region made av
able to it by the crisis. It then returns to the old region f
another stretch of time, followed by a burst, and so on. T
kind of widening of the attractor usually occurs in chao
systems at a crisis@33#. However, in the present case, w
FIG. 9. ~a! Average laminar length (^ l &) vs
(A2Ac) at f 50.35; ~b! number of laminar peri-
ods N(t) of durationt in the case of transition
through type-III intermittency.
9-7
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FIG. 10. Projection of the attractors of Eq
~3! for f 50.2 ~i! in the (x,u) plane; ~ii ! in the
(x,i ) plane, indicating the transition from quas
periodic attractor to chaotic attractor via a SN
through the crisis-induced intermittent mech
nism: ~a! wrinkled attractor~period 2T) for A
52.138; ~b! SNA at A52.1387; ~c! SNA at A
52.1388.
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have shown such a possibility in a quasiperiodically forc
system which also truncates the growth of the torus-doub
cascade, creating SNAs. The variation of the Lyapunov
ponent at such a transition does not follow a uniform patte
in contrast to the case of low dimensional chaotic syste
exhibiting the crisis phenomenon@see Figs. 11~a! and 11~b!#.
In addition, the phase sensitivity functionGN grows withN
with a kind power-law relation for the SNA while it is
bounded for the torus regions@see Fig. 11~c!#. On further
increase of the value ofA to A52.143, the system exhibit
chaotic oscillations (C2) and the quantityGN grows expo-
nentially with N.

V. DYNAMICS OUTSIDE THE TORUS BUBBLE

Two additional interesting transitions take place outs
the torus bubble region, namely~1! gradual fractalization of
the torus and~2! the type-I intermittent route, both leading t
creation of a SNA. The details are as follows.

A. Fractalization route

The first mechanism is the gradual fractalization rou
which is the same as studied in Sec. IV B; the only differen
now is that here a transition from a one-frequency torus (1T)
to chaos via the SNA is realized through the gradual frac
02621
d
d
-
,
s

e

,
e

-

lization process instead of the transition from the 2T torus
discussed above. Such a phenomenon is identified in
lower side of theC1 region ~GF4! in Fig. 2. Specifically,
within the region 0.58, f ,0.8, on increasing the value ofA
to the region 1.211,A,1.569 for a fixedf, the SNA is cre-
ated through the gradual fractalization route. First, a tran
tion from the one-frequency torus to a wrinkled attrac
takes place on increasingA, A51.25 for f 50.7, as shown in
Fig. 12~a!. The wrinkled attractor loses its continuity consi
erably asA is increased further and then finally becom
fractal atA51.265@see Fig. 12~b!#. It is very obvious from
these transitions that the torus gradually loses its smooth
and ultimately approaches fractal behavior via a SNA bef
the onset of chaos as the parameterA increases toA51.3. In
addition, it is observed that there is no apparent interac
among the orbits. This property has been confirmed thro
the calculation of the maximal Lyapunov exponent, its va
ance, and the phase sensitivity as in the period-doubled
gions.

B. Type-I intermittent route

A different type of intermittent route, namely, type I@21#,
via the SNA is also observed in the upper region ofC1 in
Fig. 2. Within the range of values 0.58, f ,0.8, on increas-
9-8
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INTERRUPTION OF TORUS DOUBLING BIFURCATION . . . PHYSICAL REVIEW E63 026219
ing the value ofA in the range 1.5,A,2.0, a transition from
the chaotic attractor (C1) to a SNA takes place first and the
the SNA is eventually replaced by a one-frequency qua
eriodic orbit through a quasiperiodic analog of saddle-no

FIG. 11. Transition from doubled torus to SNA through cris
induced intermittency mechanism in the region IC:~a! the behavior
of the Lyapunov exponent (L); ~b! the variance (s); ~c! plot of
phase sensitivity functionGN vs N ~dotted line corresponds to toru
for A51.83, dashed line belongs to SNA forA52.1388, and solid
line represents chaos forA52.139).

FIG. 12. Projection of the attractors of Eqs.~3! for f 50.7 in the
(x,u) plane indicating the transition from a one-frequency quas
eriodic attractor to a chaotic attractor via a SNA through the grad
fractalization mechanism:~a! wrinkled attractor~period 1T) for A
51.25; ~b! SNA at A51.265.
02621
-
e

bifurcation. At this transition, the dynamics is found to b
again intermittent but of a different type.

To understand more about this phenomenon, let us c
sider the specific parameter valuef 50.7 and varyA. For A
51.801 65, the attractor is a chaotic one (C1). As A is in-
creased toA51.801 685, the chaotic attractor transits to
SNA as shown in Fig. 13~a!. On increasing the value ofA
further, an intermittent transition from the SNA to a torus
shown in Fig. 13~b! occurs atA51.8017. At this transition,
abrupt changes in the Lyapunov exponent as well as its v
ance show the characteristic signature of the intermitt
route @indicated in Figs. 14~a! and 14~b!# to SNA as in the
type-III case. In addition, again the quantityGN grows with
N with a power-law relation for the SNA while it is bounde
for the torus regions@see Fig. 14~c!#. However, in the chaotic
region, the quantityGN grows exponentially withN.

Further, the plot of laminar lengtĥl & as a function of the
derived bifurcation parametere5A2Ac , where Ac is the
critical parameter for the occurrence of the intermittent tra
sition, for this attractor reveals a power-law relationship
the form

^ l &5e2b, ~6!

with an estimated value ofb;0.53 @Fig. 15~a!#. Also, the
plot of the number of laminar periodsN(t) vs the period
length t @shown in Fig. 15~b!# indicates that after an initia
steep decay there is an increase to a large value ofN(t). It
also obeys the relation

N~t!;
e

2c H t1tanFarctanS c

Ae/u
D 2tAeuG

2arctanS c

Ae/u
D t2t2Ae

uJ , ~7!

where c is the maximum value ofx(t), u50.9, and e
50.000560.000 03. The above analysis confirms that su
an attractor is associated with the standard intermittent
namics of type I described in Refs.@36,37#.

-
al

FIG. 13. Projection of the attractors of Eqs.~3! for f 50.7 in the
(x,u) plane indicating the transition from a one-frequency quas
eriodic attractor to a chaotic attractor via a SNA through the typ
intermittency mechanism:~a! intermittent SNA forA51.801 685;
~b! torus atA51.8017.
9-9
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VI. TRANSITION BETWEEN DIFFERENT SNAs

In the preceding sections, we have enumerated the se
ways by which SNAs are created from torus attractors. O
might observe from the (A-f ) phase diagram, Fig. 2, tha
there are several regions where transitions from one typ
SNA to another type occur along the borders separating q
siperiodic and chaotic attractors. In particular, transitions
cur between GF3 and IC, IC and GF2, GF2 andS3, S3 and
GF1, GF1 and HH, andS1 and GF4. On closer scrutiny, w
find that there exists a very narrow range of parameters
tween different regions of SNAs where chaotic motion o
curs. That is, the SNA of one region transits to chaos be
exhibiting a different type of SNA in the next region. How
ever, we refrain from giving finer details as they do not se
to be of significance.

FIG. 14. Transition from intermittent SNA to a torus through t
type-I intermittent mechanism in the regionS1: ~a! the behavior of
the Lyapunov exponent (L); ~b! the variance (s); ~c! plot of phase
sensitivity functionGN vs N ~dotted line corresponds to torus fo
A51.8017, dashed line belongs to SNA forA51.801 685, and
solid line represents chaos forA51.8015).
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VII. SIGNATURES OF FINITE-TIME LYAPUNOV
EXPONENTS AT THE TRANSITION TO DIFFERENT SNAs

Recently, it was noted by Prasad, Mehra, and R
maswamy@21# that a typical trajectory on a SNA actuall
possesses positive Lyapunov exponents in finite time in
vals, although the asymptotic exponent is negative. As a c
sequence, one observes the different characteristics of S
created through different mechanisms by a study of the
ferences in the distribution of finite-time exponentsP(N,l)
@21#. For each of the cases, the distribution can be obtai
by taking a long trajectory and dividing it into segments
length N, from which the local Lyapunov exponent can b
calculated. In the limit of largeN, this distribution will col-
lapse to ad function P(N,l)→d(D2l). The deviations
from, and the approach to, the limit can be very different
SNAs created through different mechanisms. Figures 16
lustrate the distributions forP(50,d) across the five differen
transitions discussed in the present study. A common fea
of these cases is thatP(N,l) is strongly peaked about th
Lyapunov exponent when the attractor is a torus, but on
SNA the distribution picks up a tail which extends into th
local Lyapunov exponentl.0 region. This tail is directly
correlated with enhanced fluctuation in the Lyapunov ex
nent on SNAs. On the fractalized SNA and on doubling
the SNA, the distribution shifts continuously to larg
Lyapunov exponents, but the shape remains the same
torus regions as well as SNA regions, while on the HH a
intermittent SNA routes, the actual shapes of the distribut
on the torus and the SNA are very different. One remarka
feature of intermittent SNAs is that the positive tail in th
distribution decays very slowly.

To quantify further the distribution of finite-time
Lyapunov exponents, let us consider, for example, the fr
tion of exponents lying abovel50, F1(N), vs N for the
different SNAs. It has been found that, except for the int
mittent SNA ~for both types III and I!, for which F1(N)
;N2b, this quantity decays exponentially,F1(N)
;exp(2gN) for all other transitions, with the exponentsb
and g dependent strongly on the parameters of the syst
For the specific SNAs corresponding to the parameters
ported in the previous section these quantities take the
lowing values. For type-III and type-I intermittency, theb
values are 0.38 and 0.71. However, for HH, GF, and IC,
b and a values are 0.27 and 0.32, 0.31 and 0.17, and 0
and 0.34, respectively.

VIII. CONCLUSION

In this paper we have described the creation of SN
through various routes and mechanisms in a protypical
ample, namely, the quasiperiodically driven cubic ma
These are summarized in Table I. Torus-doubling bifur
tions are not mandatory for the creation of SNAs. Howev
they are merely a convenient agent in setting the stage for
appearance of SNAs. There are at least four different mec
nisms, namely, Heagy-Hammel, gradual fractalization, a
type-III and crisis-induced intermittency, through which th
truncation of torus doubling and the creation of SNAs occ
The truncation of torus-doubling and the genesis
9-10
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FIG. 15. ~a! Average laminar length (^ l &) vs
(A2Ac) at f 50.7; ~b! number of laminar periods
N(t) of duration t in the case of transition
through type-I intermittency.
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SNAs through crisis-induced intermittency is entirely diffe
ent from the interior crisis mechanism for the appearance
SNAs found by Wittet al. @38#. We have further observed a
least two different ways, namely, type-I intermittency a
gradual fractalization, through which SNAs are formed wh
a transition from a one-frequency torus to chaos takes pl
All these phenomena have been identified in a two param
(A-f ) phase diagram. To distinguish among the differe
mechanisms through which SNAs are created, we have
amined the manner in which the maximal Lyapunov exp
nent and its variance change as a function of the parame
In addition, we have also examined the distribution of lo
Lyapunov exponents and found that on different SNAs th
have different characteristics. The analysis confirms tha
02621
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n
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y
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the intermittent SNAs the signature of the transition is
discontinuous change in both the maximal Lyapunov ex
nent and the variance. The chaotic component on the in
mittent SNA is long lived. As a consequence, a slow posit
tail in P(N,l) and a resulting power-law decay forF1(N)
can be identified. For the other SNAs, a resulting exponen
decay forF1(N) has been identified.
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A

FIG. 16. Distribution of finite-time Lyapunov
exponents on SNAs created through~a! the
Heagy-Hammel mechanism,~b! gradual fractal-
ization, ~c! type-III intermittency, ~d! crisis-
induced intermittency, and~e! type-I intermit-
tency. Solid and dashed lines correspond to SN
and torus distributions.
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TABLE I. Routes and mechanisms of the onset of various SNAs in the quasiperiodically forced cubic map.

Characteristic properties
Fraction of Scaling law

positive valued ^ l &
Type of Lyapunov finite-time Lyapunov ;

route Mechanism exponentl Variances exponents@F1(N,l)# (Ac2A)a Figures

A. Interruption of torus-doubling
1. Heagy- Collision between a period- Irregular in SNA Small in torus Decays 3 a
Hammel@8# doubled torus and its region and smooth and large in SNA exponentially

unstable parent in torus
2. Gradual Torus gets increasingly Increases slowly No significant Decays 5 a
fractalization@9# wrinkled and transforms during the changes exponentially

into a SNA without any transition from torus
interaction with a nearby to SNA
unstable periodic orbit

3. Type-III During the transition from Abrupt change Abrupt increase Power-law a;1.1 7, 8,
intermittency torus-doubled attractor to during the at the variation @see also and 9
@19# SNA, a growth of subharmonic transition from transition point Eq.~5!#

amplitude begins, torus to SNA
together with a decrease
in the size of the
fundamental amplitude

4. Crisis-induced Doubling of destroyed torus Does not follow Irregular variation Decays 10
intermittency involves a kind of sudden uniform pattern in SNA region exponentially and

widening of the attractor
B. Transition from one-frequency torus

1. Gradual Torus gets increasingly Increases slowly No significant Decays 12
fractalization wrinkled and transforms during the transition change exponentially
@9# into a SNA from torus to SNA
2. Type-I Torus is eventually Abrupt change Abrupt increase Power-law a;0.55 13, 14,
intermittency replaced by SNA during the at the transition variation @see also and 15,
@21# through an analog transition from point Eq.~7!#

of the saddle-node torus to SNA
bifurcation
ct
r-
o
ot
r
da
ve
u
w

rb
ge
ri
ni
APPENDIX: CHARACTERIZATIONS OF THE SNA

1. Phase sensitivity exponent

In order to distinguish between the smooth and the fra
torus~SNA and chaos!, we examine the attractor with refe
ence to the phaseu of the external force. Even though n
exponential divergence of orbits exists for either the smo
or the fractal torus~SNA!, they are different from each othe
in terms of the phase sensitivity. Pikovsky and Feu
@23,24# have shown how two points on the SNA that ha
closeu values can be separated from each other by introd
ing the phase sensitivity exponent. To appreciate this,
note that the absolute value of the first derivative of the o
u]xn /]unu fluctuates with time and sometimes has lar
bursts. To see this, one can proceed as follows. An arbitra
large burst can appear when the system is iterated for infi
time steps. By differentiating Eq.~3!, one obtains

]xn11

]u
522pQ sin~2pu!2~A23xn

2!
]xn

]u
. ~A1!
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So, starting from a suitable initial derivativeu]x0 /]uu, one
can obtain derivatives at all points of the trajectory,

]xN

]u
5SN5 (

k51

N H 22pQ sin~2puk21!

3F )
i 50

N2k21

2~A23xk1 i
2 !G J 1 )

i 50

N21 S 2~A23xi
2!

]x0

]u D ,

~A2!

with the condition that fork5N

)
i 50

N2k21

@2~A23xk1 i
2 !#51.
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Naturally, in the case of a smooth attractor, if one itera
Eqs. ~A1! and ~A2! starting from aribitrary values ofx and
]x/]u and for largeN, they converge to the attractor and i
derivative, respectively. Thus, partial sumsSN computed
from ~A2! are bounded by the maximum derivative]x/]u
along the attractor. But in the case of a fractal attractor
attractor is nonsmooth and the derivative]x/]u does not
exist, so the consideration above is no longer valid. This
be illustrated by calculating the partial sumsSN as given by
Eq. ~A2!. It has been found@23,24# that the behavior of the
sum can be very intermittent. The key observation is t
these sums are quite large and essentially unbounded. H
we plot the maximum ofuSNu,

gN~x,u!5maxuSNu. ~A3!

The value ofgN grows withN, which means that arbitrarily
large values ofuSNu appear. From this it follows immediatel
that the attractor cannot have a finite derivative with resp
to the external phase if the attractor is nonsmooth. Con
quently, the assumption of a finite derivative is inconsist
with the relation~A2!, where the second term on the righ
hand side~RHS! is exponentially small and the first term o
the RHS can be arbitrarily large. Thus, by calculating
partial sums~A2!, we can distinguish between strange~sums
are unbounded! and nonstrange~sums are bounded! attrac-
tors.

The growth rate of the partial sums with time represe
the degree of strangeness of the attractor, and can be us
a quantitative characteristic of SNAs. For this purpose,
require a quantity that is independent of a particular traj
tory while it represents the average properties of the att
tor. The appropriate quantity seems@23,24# to be the mini-
mum value ofgN(x,u) with respect to randomly chose
initial points (x,u):

GN5mingN~x,u!. ~A4!

It allows a more reliable inference about whether the attr
tor is nonsmooth. One can also infer from Eq.~A4! that GN
grows infinitely for a SNA with some relation such asGN
5Nm, wherem is a positive quantity that characterizes t
SNA; we call it the phase sensitivity exponent. However,
the case of a chaotic attractor, it grows exponentially withN.

2. Variation of finite-time Lyapunov exponents

Since the finite-time or local Lyapunov exponents (l i ,i
51,2, . . . ,M ) depend on the initial conditions, it will be
relevant to consider the variance of the average Lyapu
exponentL about thel i ’s, i 51,2, . . . ,M . It is defined
@17,21,33,39# as

s5
1

M (
i 51

M

@L2l i~N!#2. ~A5!

In all our numerical calculations, we takeN550 and M
>105.
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The variation of the local Lyapunov exponents in a fix
time intervalt can also be discussed by examining the pro
ability distributionsP(t,l) for the exponents. In fact,P(t,l)
corresponds to counting the normalized number of times
one of thel appears for fixed timet. That is, the distribution
of local Lyapunov exponents, which is a stationary quant
is defined as@33#

P~ t,l!dl[probability that l~ t ! takes a value between

l and l1dl. ~A6!

This is particularly useful in describing the structure and d
namics of nonuniform attractors. In the asymptotic limitt
→`, this distribution will collapse to ad function,

P~ t,l!→d~L2l!.

The deviations from this limit for finite times, and the a
ymptotics, namely, the approach to the limit, can be ve
revealing of the underlying dynamics@21#.

One can also calculate the arithmetic mean of all the d
tributions and obtain the variance of the Lyapunov expon
L as

s5E
2`

`

~L2l!2P~ t,l!dl. ~A7!

Dividing the total length of the orbit intoM bins as before
and defining the local Lyapunov exponents asl i , replacing
P(t,l i) by d(L2l i)/M , the above equation of varianc
goes over to the form given by Eq.~A5!.

3. Power spectrum analysis

To quantify the changes in the power spectrum~obtained
using the fast Fourier transform technique!, one can compute
the so called spectral distribution functionN(s), defined to
be the number of peaks in the Fourier amplitude spectr
larger than some value, says. Scaling relations have bee
predicted forN(s) in the case of two- and three-frequenc
quasiperiodic attractors and strange nonchaotic attrac
These scaling relations areN(s); ln(1/s), N(s); ln2s, and
N(s);s2b, respectively, corresponding to the two- an
three-frequency quasiperiodic and strange nonchaotic at
tors. In the work of Dinget al. @13#, the power-law exponen
was found empirically to lie within the range 1,b,2 for
the strange nonchaotic attractor.

4. Dimensions

To quantify geometric properties of attractors, seve
methods have been used to compute the dimension of
attractors. From them, we have used the correlation dim
sion ~introduced by Grassberger and Procaccia@40#! in our
present study, which may be computed from the correlat
function C(R) defined as

C~R!5 lim
N→`

F 1

N2 (
i , j 51

N

H~R2uxi2xj u!G ,
9-13
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where xi and xj are points on the attractor,H(y) is the
Heaviside function~1 if y>0 and 0 if y,0), andN is the
number of points randomly chosen from the entire data
The Heaviside function simply counts the number of poi
within the radiusR of the point denoted byxi and C(R)
gives the average fraction of points. Now the correlation
mension is defined by the variation ofC(R) with R:
i-

Le

u

e

an

pl.

Ra

A

02621
t.
s

i-

C~R!;Rd as R→0.

Therefore the correlation dimension~d! is the slope of a
graph of log10C(R) versus log10R. Once one obtains the di
mensions of the attractors, it is easy to quantify the stra
property of the attractors. In all our studies, we have verifi
that the SNAs have noninteger correlation dimensions.
va,
.
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